Essen, October, 17th 2023

Aquifer Thermal Energy Storage (ATES) Play Evaluation of Neogene Sequences from The Vienna

Basin in a Sequence Stratigraphic Framework

F. Conradi, W. Siedl, K. Dasgupta & A. Zamolyi

Introduction Context & Framework

- In 2020 Vienna City Council has set the goal for the city to become , *climate-neutral* by 2040.
- DHC:
 - Energy production 2019 = 6.4 TWh
 - District heating network: 1300+ km
 - 400,000+ households connected
 - 50% of energy demand in heating sector
- Geothermal and Heat Pumps should replace/reduce fossil fuels in the heating sector

"ATES is deemed as an important building block in the decarbonization process, as it can make use of excess energy that otherwise would be wasted"

Introduction

General Consideration

Rationale Principle

Possible Scale

ATES Example					
	charge	discharge	unit		
charge/discharge	4000	5000	m3/d		
	46	58	l/s		
period	7	5	months		
	5110	3650	h		
T_input / output	100	90	degC		
T_output / input	50	50	degC		
Delta T	50	40	degC		

Power / Leistung	10		MW
Energy Output per period/per year	50	35	GWh/period
Total Efficiency per cycle (charge/discharge)		0,7	

Beyond this study

- Lead Evaluation:
 - Evaluation of one (or more) specific lead(s)
- Prospect Evaluation:
 - Planning of ATES drilling project

This study Play Evaluation:

Subsurface focus

- Regional reservoir presence
- Reservoir properties

Introduction

Study Area, Project Outline & Reservoir Overview

Project Objective:

ROSPE

LEAD

PLAY

 To evaluate potential aquifers (reservoirs) of the Badenian, Sarmatian & Pannonian for ,*Aquifer Thermal Energy Storage*' (ATES) on a Play level

Project Objectives:

Identify and characterize reservoirs
 Visualize reservoirs as GDE map

Reservoirs:

- Badenian: clastic, marine fan-system
- Sarmatian: clastic, marine fan-system 🛠
- Pannonian: lacustrine delta system

Methods:

- Well data preparation (Well logs, Cores, Cuttings, Well tops data, Check shots)
- Well-to-seismic tie-in
- Well cross sections of reference wells
- Seismic resolution improvement
- Seismic interpretation
- Depositional system interpretation
- Core and well log facies interpretation
- Assessment of reservoir properties using core and well log data
- GDE maps of all plays
- Sensitivity Study

*

 \mathbf{x}

Regional Geological Setting Basin Morphology

- Up to ca. 5 km Neogene sediment infill since Early Miocene
- Development of several distinct 'mini-basins'

Regional Geological Setting Basin Morphology

- ▶ Up to ca. 5 km Neogene sediment infill since Early Miocene
- Development of several distinct 'mini-basins'

Methodology Workflow – Badenian Example

Methodology Seismic Workflow: Model-Grid → Sequence - Model

- A. Seismic 'Model-Grid' with polarity-consistent patches for whole 3D volume
- B. Mapping on Model-Grid by using automatically tracked patches in a geological meaningful way
- C. Data mapping with attributes (e.g. Rel AI, RMS) can support correlations/interpretations
- D. First-pass Geo-Model provides geological timeconsistent units in 3D
- E. Adoption of 'Sequence Model' allows for truncation of strata (i.e. unconformities, pinchouts, erosional features...), thus definition of seismic sequence stratigraphic untis.

Methodology Seismic Geomorphology – Examples

- Horizon stack consists of a series of geological timeequivalent horizons, according to geo-model.
- Spectral decomposition data (and other seismic attributes) mapped on horizon slices used to illustrate seismic features that are interpreted as architectural elements from the depositional system of each sequence

= Depositional dip

Aggradational, continuous reflector pattern with a clear 'line of marine onlaps'. Small-scale gravity-displaced frontal splays' with no or very short 'feeder channels' present. **Transgressive System Tract (TST).**

Aggradational to progradational, semi-continuous reflectors showing clinoforms. Shelf margin evolves. Numerous small, rel. short, mostly straight channels feeding into cone-like feature 4-9 km distal from margin. Late TST - Early Highstand System Tract.

Methodology Seismic Geomorphology – Examples

Progradational & aggradational, semi-continuous reflector pattern. Straight to slightly sinuous, midsized 'slope channel' present. No significant fan development in distal areas. Late Highstand System Tract.

Shelf edge marked by slump scars. Sinuous, nonmeandering erosional, tributary slope channels present. At point of transition to distributary channel arrangement marine fan-systems develop.

Lowstand System Tract

Aggradational, discontinuous to semi-continuous reflector pattern, strongly meandering channels of marginal-marine origin. Presumably tide-dominated delta environment.

Lowstand conditions of higher order during overall transgression.

Results Seismo-Stratigraphic Model

Construction of GDE map

- Overlay of nearby time equivalent horizons within single sequence illustrate change / evolution of depositional features
- Spectral Decomposition slices from Horizon Stacks 'tool of choice'
- Depositional system analogue chosen needs to be consistent with all interpretations (seismic, core & logs)
- ► Drawing or seismic extraction of depositional features → abstraction
- Grouping of features, 1st pass interpretation of Gross Depositional Environments
- QC of intermediate product with well data (cross sections, well logs, core)

Results

Badenian Seismic Cross Section

Results

Badnian Seismic Cross Section

Results Gross Depositional Environment Maps

Key Reservoir Parameter					
Sequence / Interval	Badenian	Sarmatian	Pannonian		
Area cummulative (km)	ca. 150	ca. 130	ca. 850		
Schwechat lobe / fan area / GrossEngersdorf lobe (km)	68	60	65		
Thickness Gross (m)	92-301	206-467	100-264		
Max. net thickness drilled (m)	199	224	186		
AVG_PHIE_eff_after cut-off	21	28	25		
Nr. of wells	9	5	23		
Temperature range (deg C)	50-80	40-70	30-50		

Summary Summary & Future Outlook

Play Evaluation Summary:

- > Definition of several plays of pre-defined chronostratigraphic Neogene intervals in AOI in vicinity of the City of Vienna.
- Sensitivity Analysis performed to provide framing parameter for ATES application in Neogene of the Central Vienna Basin
- Reservoir parameters of selected intervals match pre-requisites from 'Sensitivity Study'
- Depositional model & GDE map for each play provided
 - Various methodologies based on seismic, well log & core analysis in-line with proposed geological depositional models

Lead Definition (next phase):

- Selection of Leads from Play area according to customer requirement
- Risk Management for each Lead
 - Subsurface including hydrogeochemistry
 - Surface
 - Economics
- Maturation of Lead to Drilling Project

Selected References

Integrated stratigraphy of the Sarmatian (Upper Middle Miocene) in the western Central Paratethys

Mathias Harzhauser¹ and Werner E. Piller²

¹Museum of Natural History Vienna, Geological-Paleontological Department, Burgring 7, A-1014 Vienna, Austria e-mail: mathias.harzhauser@nhm-wien.ac.at
²Institute for Earth Sciences (Geology and Paleontology), University of Graz, Heinrichstrasse 26, A-8010 Graz, Austria

Width and Thickness of Fluvial Channel Bodies and Valley Fills in the Geological Record: A Literature Compilation and Classification

Article in Journal of Sedimentary Research - June 2006 DOI: 10.2110/Jsr.2006.060

Austrian Journal of Earth Sciences Vienna 2020 Volume 113/1 87 - 110 DOI: 10.17738/ajes.2020.0006

Disconnected submarine lobes as a record of stepped slope evolution over multiple sea-level cycles

Hannah L. Brooks¹, David M. Hodgson¹, Rufus L. Brunt², Jeff Peakall¹, Miquel Poyatos-Moré^{2,3}, and Stephen S. Flint² ¹Stratigraphy Group, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK ¹Stratigraphy Group, School of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK ¹Department of Geosciences, University of 030, 0371 0310, Norway

Revised Badenian (middle Miocene) depositional systems of the Austrian Vienna Basin based on a new sequence stratigraphic framework

Wolfgang SIEDL^{1*}, Philipp STRAUSS¹, Reinhard F. SACHSENHOFER², Mathias HARZHAUSER³, Thomas KUFFNER¹ & Matthias KRANNER³

Combining climatic and geo-hydrological preconditions as a method to determine world potential for aquifer thermal energy storage

Martin Bloemendal ^{a,b,*}, Theo Olsthoorn ^{a,c}, Frans van de Ven ^{a,d}

From Wessely, G. & Liebl, W. (eds), 1996, Oil and Gas in Alpidic Thrusthelts and Basins of Central and Eastern Europe, EAGE Special Publication No. 5, pp. 355–363.

Legal Disclaimer

This presentation is prepared in order to outline our expression of interest. Nothing in this presentation shall be construed to create any legally binding obligations on any of the parties. Neither party shall be obligated to execute any agreement or otherwise enter into, complete or affect any transaction in relation to this presentation.

All figures and information in this presentation are strictly confidential, they are by no means binding and thus indicative only.

© 2022 OMV Exploration & Production GmbH, all rights reserved, no reproduction without our explicit consent.

Contact

OMV Energy Trabrennstrasse 6-8 1020 Vienna

Corporate Communications insertemailadress@omv.com www.omv.com www.omv.com/socialmedia