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Background and introduction

Fig. 1: Geothermal energy utilization with mine water.
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Methodology

1. Governing equations of Hydro-Thermo-Component process

(1) Hydraulic equation (pressure):

S
∂p

∂t
+∇ · vw = 0 (1)

the Darcy velocity (vw) is calculated by,

vw = −k

µ
(∇p + ρwg) (2)

(2) Heat transport equation (temperature):

[ϕρwcw + (1− ϕ)ρscs]
∂T

∂t
+∇ · (ρwcwvwT )−∇ · (Λ∇T ) = 0 (3)

(3) Component transport equation (concentration):
∂ (ϕRc)

∂t
+∇ · (vwc)−∇ · (ϕD∇c)− ϕαRc = 0 (4)

2. Model Verification

The model has been implemented in OpenGeoSys (OGS) software and
verified with the analytical solution in the single fracture for Hydro-Thermal
(HT) and Hydro-Component (HC) process, respectively.
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Fig. 2: The model verification results of HT process against the analytical solution (Ma et al. 2020; Juliusson et al. 2012) over (a)
the fracture line: the comparison of temperature distribution along the single fracture after 1, 12 and 24 h, and (b) time: The
comparison of temperature evolution in the location of 2, 4, 6 m after the cold water continuous injection of 24 h.
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Fig. 3: The comparison results of HC process: (a) The concentration profiles comparison along the fracture after 100, 1000 and
10 000 days among the analytical solution (Tang et al. 1981), OGS-5 (Hu et al. 2022), and OGS-6 results; (b) The concentration
distribution in the matrix at the location of 0.62, 1.63 and 3.12 m away from the fracture injection point after 10 000 days.

The finite element method-flux corrected transport (FEM-FCT) is employed.
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Fig. 4: The flowchart of using Frackit, GMSH and OGS on the
model construction and configuration.
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Fig. 5: The generated 3D domain by Frackit with the discrete fracture network around the flooded reservoir based on the site
of a pilot mining cavity in Reiche Zeche in Freiberg, Germany: (a) The model geometry, and (b) The mesh for OGS
simulations, including tetrahedral elements of the matrix and triangular elements of the embedded DFN. The reservoir depth
is 1.7 m.

Results and discussion

Fig. 6: 3D simulation with DFN embedded in the domain based on Reiche Zeche in Freiberg: (a) The temperature distribution
after the reservoir is heated for 15 days, and (b) The concentration distribution after 3 hours.
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Fig. 7: The temperature and solute distribution over the line cross the middle point of the reservoir length and perpendicular to
the length direction: (a) The temperature profiles after different days, and (b) The concentration profiles after different hours.
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Fig. 8: The amount of total and accumulated energy in the surrounding formation of the cavern reservoir: (a) With the
fractured DFN formation, and (b) Without the DFN in the surrounding formation.

Conclusion
HTC model has been implemented and verified in the OGS software.
DFN influence on the heat and mass transport distance is quantified when using mine-based TES systems.
The fracture density and groundwater flow have significant influence of the thermal energy storage capacity and energy recovery ratio.
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