Eine Übersicht aller Sessions/Sitzungen dieser Veranstaltung. Bitte wählen Sie einen Ort oder ein Datum aus, um nur die betreffenden Sitzungen anzuzeigen. Wählen Sie eine Sitzung aus, um zur Detailanzeige zu gelangen.
Bias Detection in der historischen Textanalyse: Prompting, Perspektiven und semantische Präzision in der AI-Readiness der MHDBDB
Julia Hintersteiner, Alan Lena van Beek, Katharina Zeppezauer-Wachauer
Universität Salzburg, Österreich
In diesem 90-minütigen Workshop untersuchen die Teilnehmenden anhand konkreter Beispiele aus der Mittelhochdeutschen Begriffsdatenbank (MHDBDB), wie sich Verzerrungen in historischen Textkorpora identifizieren und kritisch analysieren lassen. Die MHDBDB ist eine semantisch annotierte Forschungsinfrastruktur, die aktuell für den Einsatz in AI-gestützten Analyseverfahren vorbereitet wird. Ziel ist es, historische Daten nicht nur zugänglich, sondern auch reflektiert und bias-bewusst nutzbar zu machen.
Im Zentrum des Workshops stehen zwei aufeinander aufbauende Aktivitäten: Zunächst schlüpfen die Teilnehmenden in die Rolle von Bias-Detektiv*innen und analysieren ausgewählte Begriffe aus der MHDBDB auf potenzielle Verzerrungen durch moderne Lesarten oder normdatenbasierte Kategorien. Anschließend experimentieren sie mit verschiedenen Prompting-Strategien für Large Language Models (LLMs), um zu erproben, wie sich unterschiedliche Fragestellungen auf die AI-generierten Antworten auswirken – insbesondere im Hinblick auf stereotype Reproduktionen oder historische Unschärfen.
Der Workshop vermittelt praktische Kompetenzen im Umgang mit semantischen Kategorien, Prompting und Bias-Analyse und unterstützt so die Entwicklung kritischer Datenkompetenz in den Digital Humanities. Gleichzeitig leistet er einen Beitrag zur methodischen Weiterentwicklung bias-sensibler AI-Infrastrukturen für die historische Forschung.