Veranstaltungsprogramm

Eine Übersicht aller Sessions/Sitzungen dieser Veranstaltung.
Bitte wählen Sie einen Ort oder ein Datum aus, um nur die betreffenden Sitzungen anzuzeigen. Wählen Sie eine Sitzung aus, um zur Detailanzeige zu gelangen.

 
Nur Sitzungen am Veranstaltungsort 
 
Sitzungsübersicht
Sitzung
Block 7: Deutsches Isotopennetz GIN
Zeit:
Mittwoch, 29.09.2021:
11:00 - 12:30

Chair der Sitzung: Robert van Geldern, Universität Erlangen-Nürnberg
Chair der Sitzung: Nils Michelsen, TU Darmstadt
Virtueller Veranstaltungsort: Block 7 - Meeting Link


Zeige Hilfe zu 'Vergrößern oder verkleinern Sie den Text der Zusammenfassung' an
Präsentationen
11:00 - 11:15
ID: 111

Die Tritiumverteilung in Niederschlag und Oberflächenwasser in Deutschland – ein Beitrag zum deutschen Isotopennetzwerk

Axel Schmidt, Michael Engel, Rike Völpel, Lars Duester

Bundesanstalt für Gewässerkunde, Deutschland

An der Bundesanstalt für Gewässerkunde (BfG) werden seit den 1970iger Jahren Oberflächenwasser- und Niederschlagsproben auf Tritium untersucht. Hierzu betreibt die BfG - mit Unterstützung der Wasserstraßen- und Schifffahrtsverwaltung (WSV), des Deutschen Wetterdienstes (DWD) und einiger Landesämter - ein bundesweites Netz aus insgesamt 69 Probenahmestationen mit dem Ziel, die Umweltradioaktivität großräumig zu überwachen. Dazu werden die Wasserproben aller Stationen als Monatsmischproben in den Laboren der BfG elektrolytisch angereichert und radiochemisch analysiert. Mittlerweile liegen alleine für Tritium mehr als 8000 Einzeldatensätze für Niederschlag und 23000 Einzeldatensätze für Oberflächenwasser frei zugänglich vor und können z.B. im Rahmen der Initiative „German Isotope Network - GIN“ verwendet werden.

Tritium (H-3) wird natürlicherweise durch Spallationsreaktionen in der Atmosphäre gebildet, anschließend zu überschwerem Wasser oxidiert und durch Niederschlag in die Oberflächengewässer eingetragen, wodurch es Bestandteil des hydrologischen Kreislaufes ist.

Die Tritiumkonzentrationen im Niederschlag sind im langjährigen Mittel (Untersuchungszeitraum 2010-2020) an der Station Cuxhaven (Nordsee) mit 10 TU am höchsten; landeinwärts verringern sich die Gehalte generell und liegen beispielsweise bei 8,9 TU an der Station Garmisch (Alpen). Das „Spring Leak“ – Phänomen führt im Frühsommer, im Vergleich zum restlichen Jahr, zu erhöhten Werten. Ebenso lagen die Tritiumkonzentrationen aufgrund geringer Niederschläge im Jahr 2018 an allen Stationen zwischen 15 % und 25 % über dem langjährigen Mittel.

Die Tritiumgehalte der Oberflächenwasserproben sind ebenfalls an der Nordseeküste mit etwa 33 TU (Station Helgoland) am höchsten; im Bereich der Ostsee liegen sie bei 7 TU (Station Travemünde) und sind damit mit den Konzentrationen im Landesinneren vergleichbar (z.B. 6,3 TU - Station Ulm). Überlagert werden diese natürlichen Werte durch z.T. stark erhöhte Tritiumkonzentrationen im Bereich von Kernkraftwerken, da diese im Rahmen ihres Routinebetriebes Tritium-haltiges Wasser diskontinuierlich über die Vorfluter in die Flüsse abgeben. So wird beispielsweise durch das französische Kernkraftwerk Cattenom regelmäßig Tritium in die Mosel eingeleitet, welches dann mit dem Fluss transportiert und durch Dispersionsprozesse verdünnt wird. So werden beispielsweise bis zu 500 TU im Oberflächenwasser an der Station Wincheringen (Fluss-km 222) und bis zu 200 TU an der Station Koblenz (Fluss-km 1,2) gemessen.

Diese Tritiumvariationen im Oberflächen- und Niederschlagswasser lassen sich für eine Vielzahl von wissenschaftlichen Fragestellungen verwenden. Im Rahmen dieser Präsentation sollen einige Anwendungen vorgestellt und anhand dessen die Möglichkeiten der Nutzung von Tritium als aquatischer Tracer auch heutzutage skizziert werden.



11:15 - 11:30
ID: 138

Tritium in der südlichen Nordsee: ein Tracer für lokal gebildeten Wasserdampf

Jürgen Sültenfuß

Universität Bremen, Deutschland

Weltweit wurden ab Beginn der Wasserstoffbombentests Tritium-Konzentrationen im Niederschlag aufgezeichnet.

Das Global Network of Isotopes in Precipitation (GNIP) wurde 1958 von der IAEA und der WMO gegründet und ging 1961 in Betrieb. Seit dieser Zeit nahm die Anzahl der durchgeführten Analysen kontinuierlich ab. In der südlichen Hemisphäre und auch in tropischen und subtropischen Regionen der Nordhemisphäre verringerten sich Tritiumkonzentrationen bis heute auf Werte, die der Grenze der technisch möglichen Auslösung mit Szintillationszählern entsprechen. Die Bedeutung der Messwerte aus diesen Regionen nahm daher stark ab und Messprogramme wurden eingestellt.

Das Bundesamt für Gewässerkunde (BfG) misst Tritium im Niederschlag als Monatsmittel aus fast zwei Dutzend Orten in Deutschland. Diese Datenreihen und deren Besonderheiten werden mit Tritium im Niederschlag in der deutschen Küstenregion der Nordsee vergleichen.

Merkmale, Besonderheiten:

  1. Unterschiede zwischen Maximum Konzentration im Sommer und Minimum Konzentrationen im Winter geben Hinweise auf Zumischung von Wasserdampf mit geringen Tritiumkonzentrationen aus dem Ozean während eines Jahres.
  2. Identifizierung der Variation der natürlichen atmosphärischen Tritium Produktionsrate aufgrund der Änderung des solaren Partikelstroms.
  3. Beitrag von lokalen Wasserdampfquellen am Niederschlagswasser.
  4. Abnahme des anthropogenen Tritiumbeitrags: sind historische Messungen des natürlichen Tritiums plausibel?
  5. Wie verlässlich sind gemessene Tritiumkonzentrationen im Niederschlag für die Rekonstruktion des zurückliegenden Tritiumeintrags in das Grundwasser?

Es werden Tritiumkonzentrationen im Niederschlag der Stationen des BfG mit Tritiumkonzentrationen im Grundwasser nahe der Deutschen Bucht verglichen.

Messungen von Tritium im Oberflächenwasser der Nordsee zeigen einen starken Anstieg der Werte seit Mitte der 1990iger Jahre. Zu dieser Zeit stiegen die Tritiumemissionen der Wiederaufbereitungsanlage in LaHague massiv.

Die Regensammler Station in Cuxhaven zeigt bis 1990 Tritiumwerte unterhalb anderer Stationen in Deutschland. Nach 2000 liegen die Werte aus Cuxhaven aber immer oberhalb der Werte anderer Stationen. Auch Grundwasserproben von den Ostfriesischen Inseln und nahe der Nordseeküste in Schleswig-Holsteins datiert auf Neubildungszeiten nach 2000 weisen deutlich höhere Tritiumkonzentrationen als der deutschlandweite Mittelwert der Niederschläge auf.

In der Nordsee zeigt sich die Ausbreitung von Tritium aus LaHague im östlich strömenden Küstenrandstrom und beschränkt damit räumlich die Region in der tritiumreicher Wasserdampf gebildet werden kann.



11:30 - 11:45
ID: 134

Distribution of young groundwater in the North German Basin

Annika Desens, Georg Houben

BGR, Deutschland

The Federal Institute for Geosciences and Natural Resources (BGR) is currently collecting all available groundwater age data on the territory of the Federal Republic of Germany. The background to this is that the German Site Selection Act for radioactive waste disposal sites defines groundwater age as an exclusion criterion. If young groundwater is detected in the vicinity of potential host formations, these sites must be excluded as a repository for high-level radioactive waste. In the by-laws, detectable concentrations of tritium (3H) and carbon-14 (14C) are specifically mentioned as indicators for young groundwater.

Groundwater ages also can be used for many other scientific questions, e.g. for studies on the transport of pollutants, such as nitrate and pesticides, for groundwater recharge estimations and for the calibration of regional groundwater models.

In addition to the collection of data, which will be archived in a publicly accessible database, the project will investigate the influence of various parameters on the determination of groundwater age, e.g. the screen length and the recharge rate and the distribution of young groundwater in the various hydrogeological units.

In the presentation, a short introduction to the database will be given and the first results on the spatial distribution will be shown. In addition, the first statistical evaluations on the depth-specific distribution of young groundwater in the North German Basin will be presented.



11:45 - 12:00
ID: 102

Stable isotope patterns of German rivers with aspects of scales and continuity

Paul Königer1, Christine Stumpp2,3, Axel Schmidt4

1Groundwater Resources Quality and Dynamics, Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany; 2Institute for Soil Physics and Rural Water Management, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria; 3Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg (HMGU), Germany; 4Environmental Radioactivity and Monitoring, Federal Institute of Hydrology (BfG), Koblenz, Germany

The stable isotope composition of river water (2H, 18O) in large basins mainly reflect precipitation, snow-melt or ice-melt inputs and modifications due to surface storage, mixing and contributions of time delayed groundwater components. Continuous observations of river water stable isotope patterns in high-resolution of time and space serve as characteristic fingerprints for specific locations or whole river basins. In Germany, river monitoring for radioactive isotopes started in the mid 1970s organized by the Federal Institute of Hydrology (BfG). Today a monitoring network for stable isotopes at 50 stations in monthly resolution is available [1, 2, 3] as part of the monitoring program of the BfG. The time series for stable isotopes are longer than three years and for some stations of up to 30 years. Additionally, daily river water samples were collected during the extraordinary dry autumn in October 2018 until January 2019 at six selected stations in the Rhine and five stations in the Elbe basin.

Most dominating stable isotope effects in river water are those of seasonality and altitudes, but also a continental effect is visible from δ18O vs. δ2H plots. Snow and ice-melt contribution in the Rhine and Danube during the summer months and a consecutive dilution of these signals by tributary rivers is visible. Close to the coasts in northern Germany, stable isotope patterns reflect influence of seawater and tides. Daily patterns during the dry season 2018/2019 do surprisingly not exhibit extreme changes but rather trends on enhanced groundwater contribution. Comparing German river basins of different sizes and mean catchment altitude reveal influences of scales. Long time series allows a discussion of the challenge to collect continuous data, but also uncertainties of measurements and the need for laboratory inter-comparisons.

References:

[1] Reckerth A., Stichler W., Schmidt A., Stumpp C. (2017): Long-term data set analysis of stable isotopic composition in German rivers. J Hydrol. 552: 718-731.

[2] Stumpp C., Klaus J., Stichler W. (2014): Analysis of long-term stable isotopic composition in German precipitation. J Hydrol. 517: 351-361.

[3] Koeniger P., Leibundgut Ch., Stichler W. (2009): Spatial and temporal characterization of stable isotopes in river water as indicators of groundwater contribution and confirmation of modelling results; a study of the Weser River, Germany. IEHS 45 (4): 289-302.



12:00 - 12:15
ID: 116

Very high resolution Automated Rain Water Sampler for stable water isotope monitoring

Christoff Andermann, Torsten Queißer, Markus Reich, Oliver Rach, Niels Hovius, Dirk Sachse

GFZ Potsdam, Deutschland

With changing climate, increasing world population, the linked shortage of resources and pollution of the environment necessitates adequate tools and technics to monitor the Earth’s system. Measuring isotope ratios and trace elements dissolved in rainwater are useful utensils to understand the system and trace sources and pathways as well as to examine the timescales of transport of rainwater. Yet, it is very difficult to track, trace and measure rainwater pathways over landscapes and oceans. In particular, sampling and sample preservation is notoriously difficult and, in many cases, very laborious in manpower and technical demanding. Comprehensive and automated monitoring of precipitation waters in space and time can improve our process understanding to better predict the nature and magnitude of future hydrometeorological changes. Today, no commercial, and only a few research level, automated sampling devices for rainwater exist. However, no existing sampling technology fulfills the quality criteria for sophisticated hydro-chemical rainwater analysis in particular in remote areas over long time periods.

Facing this lack of high-quality technical solutions, we present a newly developed automatic and autonomous precipitation water sampler for stable water isotope analysis of rainwater. Our autosampler can take 165 discrete rainwater samples with a minimum time resolution of 5min or volume wise 2mm of rainfall. The device is designed to be highly autonomous and robust for long-term deployment in harsh and remote areas and fulfills the high demands on sampling and storage for isotope analysis (i.e. sealing of samples from atmospheric influences, no contamination and preservation of the sample material). The sampling device is portable, has low power consumption, is remotely accessible and thus has a real-time adaptable sampling protocol strategy, and can be maintained at distance without any need to visit the location.

The device was tested in several evaluation and benchmarking cycles. First lab tests with dyed waters and waters with strongly differing isotopic signature demonstrate that the device can obtain, store and conserve samples without cross contamination over long periods of time. The device has been tested so far under several conditions, e.g. heavy summer thunderstorms with more than 50mm/24h of rainfall, sustained winter rainfall and in cold conditions involving melting of snow. Furthermore, we run a benchmark test with several devices in parallel. Finally, in October 2020, we had installed six devices, in collaboration with Germany's National Meteorological Service (Deutscher Wetterdienst DWD), in a South-West to North-East transect across the Harz mountains in Germany.

This automated rainwater sampler provides a sophisticated technological solution for monitoring moisture pathways and water transfer processes with the analytical quality of laboratory standard measurements on a new level of temporal and spatial resolution.



12:15 - 12:30
ID: 140

GIN and beyond: Cumulative rain collectors for isotope studies in challenging climates

Nils Michelsen1, Zeneb Najmi1, Paul Königer1,2, Christoph Schüth1

1Institute of Applied Geosciences, Technical University of Darmstadt, Germany; 2BGR Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany

Data on the isotopic composition of precipitation often represent a key component in isotope studies of the water cycle. For gathering the corresponding samples, various types of cumulative precipitation collectors are available. Among these samplers, the tube-dip-in-water collector with pressure equilibration tube (Gröning et al., 2012) is particularly popular, largely due to its simplicity and rather effective evaporation reduction (Michelsen et al., 2018).

In cool climates however, the use of this sampler can be challenging, because water may freeze inside the collection bottle and block the inlet tube (Gröning et al., 2012). Extended exposure to warm conditions can be problematic as well, particularly if the collected water volume is small compared to the size of the collection vessel (Michelsen et al., 2018).

Here, we outline a few simple designs, which can help to overcome the above-mentioned difficulties and may hence be useful in the German Isotope Network (GIN) and beyond.

References

Gröning, M., Lutz, H.O., Roller-Lutz, Z., Kralik, M., Gourcy, L., Pöltenstein, L., 2012. A simple rain collector preventing water re-evaporation dedicated for δ18O and δ2H analysis of cumulative precipitation samples, Journal of Hydrology 448–449, 195–200.

Michelsen, N., van Geldern, R., Roßmann, Y., Bauer, I., Schulz, S., Barth, J. A. C., Schüth, C., 2018. Comparison of cumulative precipitation collectors used in isotope hydrology, Chemical Geology, 488, 171–179.