Conference Agenda

J: Paper Session_O4: Mobility, Multiscalar Design and Environmental Quality
Saturday, 10/Apr/2021:
9:45am - 11:15am

Panel Moderator: Pravin Bhiwapurkar


Climate Change and Design: Multiscalar Design Research Within the Sonoran Desert

Aletheia Ida, Susannah Dickinson

University of Arizona, United States of America

“Earth’s climate is now changing faster than at any point in the history of modern civilization, primarily as a result of human activities.”[1] The climate change emergency requires that we drastically re-evaluate the design of the built environment and our pedagogical methods and tools. This essay addresses the issue directly through dissemination of both the framework and outcomes from an upper-level architecture design studio course that focuses on this challenging problem. At its core, the methodological framework insists upon interscalar observation and performative analysis across natural biome dynamics, the built environment, and sociocultural conditions.

Our essay explores the interscalar context for grounded research and climate change impacts within the Sonoran Desert region of Arizona, USA and Sonora, Mexico. This robust natural biome of an extreme hot-arid climate that is coupled with sky-islands of pinyon-pine forests, canyons, and water bodies along the Gulf of California Coast is a complex natural ecosystem. Climate change dynamics and challenges are due to the primary land mass being surrounded by sea-level rise with concurrent desert and forest drought as well as severe monsoons and tropical storms.[2] Long-term drought in regional forests makes these ecosystems more susceptible to prolific forest fires.[3],[4] Temperature increase impacts the heat stress experienced by animal and human populations, affecting both natural and built ecologies in unforeseen ways.[5] Because of the challenging political context at the border of Mexico and the United States and the presence of a physical boundary, migration paths, ecological flows and humanitarian crises are further exacerbated.

To address the complexities of the societal and environmental challenges through design, the methodology integrates knowledge of climate and complexity theories with advanced digital technologies from different disciplines to provide emergent potentials for our future. Parallel modes for integrating accessible micro-sensing data collection technologies with multi-dimensional digital design methods enable expanding ecologies by allowing for new performative layers of information to intersect where previously hidden. For example, conducting real-time thermal sensing of varying soils, in conjunction with lab-based soil sample analyses, and mapping the results into a large-scale regional GIS database begin to describe zones of chemical contaminations and thermal imbalances that correlate with zones of photo-essay observations of building decay and poverty. In this sense, the emergent design process across micro- and macro- contexts of physical and cultural information culminate in design proposals that simultaneously educate and mitigate current unprecedented climate change impacts. Using the lens of both a microbiologist and of a geologist, as well as a climatologist and humanitarian, the exercises required throughout the design process force transdisciplinary territories to converge.

Measuring the Impact of Environmental Quality on Elderly Residents Cognitive Functioning – A Critical Review

Nasrin Golshany, Ihab Elzeyadi

University of Oregon, United States of America

Cognitive impairment is a critical issue among the aging population. Cognitive functioning refers to multiple mental abilities, including learning, thinking, reasoning, remembering, problem solving, decision making, and attention. In this study, cognitive functioning refers specifically to working memory as the aging population show a greater impairment in this area in comparison to other populations. Cognitive impairment for elderly occupants – that includes diseases, such as Dementia, Alzheimer, stress, and anxiety-- are growing up dramatically worldwide in recent years. World Health Organization estimates that there has been more than 50 million patients with dementia in the world in 2019 and this number is increasing every year by nearly 10 million new cases.

Previous studies reported that different attributes of the physical environment could affect participant’s mood and effect cognitive performance. Currently, many cognitive tests have been used to assess occupant’s response to changes in their physical environments. These cognitive tests have been frequently used in environmental psychology and gerontology studies, however, their sensitivity to measuring impacts of architectural parameters and indoor environmental quality (IEQ) is still unknown. To address this problem, this study develops content analysis of the different cognitive tests through a critical review to determine which tests are more sensitive to measure the impact of the physical environment and spatial parameters on cognitive performance. The specific question guiding this study is “what are the most sensitive cognitive tests that measures indoor environmental quality impacts on cognitive functioning?”

The review employed a systemic procedure of keyword search and cross-tabs using combinations of keywords through Cinahl, Embase, Medline, and PsychINFO and PsycARTICLES databases. In addition, a supplemental search through Google Scholar and other architectural science related journals was conducted by analyzing studies that referred to ‘cognitive performance’, ‘cognitive tests’, ‘cognitive assessment’, ‘cognitive screening’ and ‘cognitive impairment’ in the title or the abstract. This analysis allows us to qualify, compare, and rank different cognitive tests based on how closely they relate to IEQ and architectural parameters.

The analysis revealed that four tests are have been mostly used in previous studies: Montreal Cognitive Assessment (MoCA), Mini-Mental State Examination (MMSE), Montreal Imaging Stress Task (MIST), and Mini-Cog. These tests measure mental functions through a series of questions and/or simple cognitive tasks like tracking, simple reaction time, and numerical vigilance. In addition, there are various protocols that measure cognitive performance such as: Standardized Mini-Mental State Examination (SMMSE), Abbreviated Mental Test (AMT), Six-Item Screener (SIS), Six-Item Cognitive Impairment Test (6CIT), Clock Drawing Test (CDT), and The General Practitioner Assessment of Cognition (GPCOG). Findings from this analysis provide new insights into the scope of comparative studies for investigating the effect of indoor environment qualities on cognitive performance. Results of this analysis indicate that IEQ mainly influence cognitive tests, which involve visuospatial and constructional praxis cognitive domains such as CDT, Mini-cog and GPCOG. Evidence also shows AMT, 6CIT, GPCOG and MMSE are the most relevant tests to orientation cognitive domains.

Walking the Walk. Pedestrian Mobility in Emerging Cities

Diana Maria Jimenez Aguilar

Universidad de Sonora, Mexico

ABSTRACT: Through the Sustainable Development Goals, cities are intended to be sustainable, inclusive, and resilient (UNDP 2016). In the hierarchy of urban mobility, a walkable city promotes equity and social benefit with the least impact on the environment (NACTO 2016). This paper addresses pedestrian mobility through the analysis of the street. Walkability can be a complex concept but definitions concur in referring to qualities of the environment that make walking possible and desirable (Speck 2013). The possibility of walking is not only related to mobility, it is also part of a broader discussion regarding living conditions and options for people within the city (Gehl 2014).

This case study takes place in Hermosillo, the capital city of Sonora, Mexico. Located approximately 280 km from the border with Arizona in the United States - within the Sonoran Desert. Hermosillo has a population of just over 855 000 inhabitants (INEGI 2020). It is considered by the Inter-American Development Bank (IDB) an emerging city with optimal characteristics to guide its growth towards a more sustainable, resilient, and inclusive future. The street selected for this paper has its origins in downtown, the oldest neighborhood of the city, and extends west, towards the most recent developments. One part of the analysis is made by establishing historic stages of development of the street. Later, aiming to recognize policies in the built environment, on-site measuring was made a), by measuring walkways width in different segments to find how pedestrian spaces have evolved and b), by applying a walkability tool for an assessment of each stage. Results show a discrepancy between the discourse in development plans and the built environment among the street. This work in progress poses the question of how does a city embraces the consequences of modernization and industrialization that impact the human scale.