Conference Agenda

Overview and details of the sessions of this conference. Please select a date or location to show only sessions at that day or location. Please select a single session for detailed view (with abstracts and downloads if available).

Please note that all times are shown in the time zone of the conference. The current conference time is: 28th Nov 2021, 12:43:58pm PST

Session Overview
H: Paper Session_T10: Urban Environments, Evaluation and Assessment
Saturday, 10/Apr/2021:
8:00am - 9:30am

Panel Moderator: Kyounghee Kim

Show help for 'Increase or decrease the abstract text size'

User-Driven Evaluation Of Emergent Patterns Of Space Use In Vertically Integrated Urban Environments

Srilalitha Gopalakrishnan1, Daniel Wong1, Ajaykumar Manivannan1, Roland Bouffanais2, Thomas Schroepfer1

1Singapore University of Technology and Design (SUTD), Singapore; 2University of Ottawa

High-density liveable future cities can be understood as multi-scale complex systems that require new integrated planning and design strategies. The city serves as a superstructure in which the built environment and its users interact continually and mutually shape each other over time. In high-density urban environments, integrated mixed-use buildings are increasingly taking the form of vertical extensions of the urban spaces on the ground, where circulation, land uses, open spaces, ecological networks, and human activities are distributed both laterally and vertically in a dynamic relationship. Therefore, vertically integrated mixed-use buildings can be understood as networks with multiple spatial programs, diverse land use, and multi-occupancy, with shared public and common spaces and circulation paths set in a complex three-dimensional relationship.

As complex adaptive systems, based on an ‘organic analogy’, cities are also a product of an evolutionary process and exhibit emergent patterns and orders within the realm of seemingly unpredictable, chaotic, and surprising behaviour, which can be studied and modelled. Complex system studies can thus be extended to these large inter-connected multi-occupancy vertically integrated buildings to systematically determine and evaluate the underlying patterns of spatial and social networks that unfold as space and users interact. The emergent patterns of movement and space use can inform the future design of vertically integrated urban space and its aesthetic, social, cultural, and economic performances.

This paper argues that studying high-density vertically integrated buildings using user-generated data can contribute to a better understanding of the socio-spatial qualities of the built environment. The advent of affordable and efficient technologies like low-energy Bluetooth (BLE) devices combined with smartphone sensors allow for the tracking and localization of building users within complex multi-level integrated spatial configurations. An analysis of the resulting data illustrates how users interact spatially with each other and the built environment they occupy. Correlating space use patterns and spatial connectivity of buildings with their resulting emergent properties can inform how users form networks of mobility and temporal communities.

This paper presents the results of a post-occupancy case study of a vertically integrated mixed-use building in Singapore. Real-world data is analysed to produce evidence of how (1) integrated public and common spaces in the building are used, (2) how they influence user behaviour and movement patterns, and (3) how they impact social interactions and user activities over time. The study uses empirical and digital methods to track and record user movement patterns, activities, and space use at significant public and common open spaces in the building. The combination of data collected with the help of sensors, visual observation surveys, and spatial maps are analysed to identify mobility patterns that generate temporal communities and establish correlations between mobility patterns, co-presence networks, and spatial distribution in public and common open spaces.

The outcome illustrates the potential of the methodology to evaluate performance of the many of the building's important spaces that can inform future urban and architectural design strategies of vertically integrated mixed-use buildings to better serve their communities and individual users.

UrbanLCA: Developing Life Cycle Assessment System Boundary Guidelines for Comparable City Evaluations

Hala Alfalih, Tarek Rakha

Georgia Institute of Technology, United States of America

As global urbanization increases, “a projected 28% of people worldwide will be concentrated in cities with at least 1 million inhabitants” (United Nations 2018) by 2030 and this means that the environmental burdens are increasing as well. This population increase signifies the importance of assessing the performance in relation to environmental impact that cities have, both directly and indirectly. Life Cycle Assessment (LCA) provides a method to quantify and assess the performance of cities in a holistic and comprehensive way which displays these impacts. Currently, the ISO standards 14044 and 14040 provide a procedure set for handling the development of LCA which can be applicable to complex systems such as cities. According to previous literature, LCA at the urban scale lacks data granularity and homogeneity. Information such as the system boundary definition (administrative, systematic, and geographical), reference flow (the number of cities which is equivalent to a city of one million inhabitants living with full prosperity in a given year), function (describes the performance characteristics of the system under study), and functional unit (a quantification of this performance for use as a reference unit) are still being researched and determined. Recent work has already provided possible methods to define the Reference Flow, Function, Functional Unit, and goals of the city and this information can now be applied to the urban Life Cycle Assessment, but the system boundaries still need to be further researched.

This paper will provide the basis for a standardized method to define the system boundary for urban-scale LCA. Since urban areas are made up of different sized neighborhoods with different levels of development, various geographical locations and multiple systematic subdimensions (energy, quality of life, information, materials, utilities and governance, transport) we can not apply the same framework to determine the system boundary for all of them. The process is threefold: First, selecting multiple different urban regions. Second, determining what the urban region includes from physical boundaries to systemic functions. Third, understanding which networks are directly and indirectly affected by the functions of a city, and hence being able to determine the physical then methodological definition of the system boundary. The results can then be compared and iterated to produce a more reliable framework for determining the system boundary. Therefore, providing more opportunities to compare assessment results from one city to another.

Urban Heat Island Phenomenon: A Review and Comparison of Assessment Methodologies

Aysem Berrin Cakmakli1, Hazem Rashed-Ali2

1Middle East Technical University, Turkey; 2University of Texas at San Antonio, United States of America

The temperature difference between densely built-up city areas and surrounding suburban and rural ones is defined as The Urban Heat Island (UHI) phenomenon. In the literature, there are two main classifications for factors influencing this phenomenon including spatial factors, e.g. features of landform surfaces and surface characteristics, and temporal ones, linked to yearly, seasonal, diurnal, and nocturnal air and surface temperatures. This paper presents an overview and critical analysis of existing literature regarding the Urban heat Island (UHI) phenomenon. The paper also addresses existing approaches for measuring the urban heat island intensity (UHII). Several methodologies for modelling UHI intensities at the building, city, and regional scales are then presented. The paper concludes with an analysis and categorization of the characteristics of the Urban Heat Island Phenomenon (UHI) across four different climate regions and addresses spatial and temporal factors used to assess the environmental and social impacts of the phenomenon on urban planning in these different climatic regions, and how some of these factors can be used as design tools to compare and evaluate different arrangements, renovations and policy making strategies.

Contact and Legal Notice · Contact Address:
Privacy Statement · Conference: ARCC 2021
Conference Software - ConfTool Pro 2.6.142
© 2001 - 2021 by Dr. H. Weinreich, Hamburg, Germany